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ABSTRACT
Recommendation in the modern world is not only about capturing
the interaction between users and items, but also about understand-
ing the relationship between items. Besides improving the quality
of recommendation, it enables the generation of candidate items
that can serve as substitutes and supplements of another item. For
example, when recommending Xbox, PS4 could be a logical substi-
tute and the supplements could be items such as game controllers,
surround system, and travel case. Therefore, given a network of
items, our objective is to learn their content features such that
they explain the relationship between items in terms of substitutes
and supplements. To achieve this, we propose a generative deep
learning model that links two variational autoencoders using a con-
nector neural network to create Linked Variational Autoencoder
(LVA). LVA learns the latent features of items by conditioning on
the observed relationship between items. Using a rigorous series
of experiments, we show that LVA significantly outperforms other
representative and state-of-the-art baseline methods in terms of
prediction accuracy. We then extend LVA by incorporating col-
laborative filtering (CF) to create CLVA that captures the implicit
relationship between users and items. By comparing CLVA with
LVA we show that inducing CF-based features greatly improve the
recommendation quality of substitutable and supplementary items
on a user level.
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Figure 1: An example of item recommendation that serve as
substitutes and supplements to themain product of interest.

1 INTRODUCTION
Recommender systems have witnessed a significant growth over
the last decade. Evolving from simple content and collaborative fil-
tering based techniques to more complex hybrid methods, modern
recommender systems are an integral part of e-commerce domain
such as Amazon, photo-sharing domains such as Instagram, and
location-based social networks such as Yelp. Despite a myriad of
research on improving and personalizing recommendation systems
[1, 3, 6], only a few have attempted to understand the relationship
between items [19, 32, 34]. Also known as candidate generation, the
objective of this research is to retrieve candidates out of billions
of items in order to recommend items that are relevant to a given
context. In this paper, we aim to understand the relationship be-
tween items to predict whether an item can serve as a substitute
or a supplement to another item. Substitutable products are those
that are interchangeable, while supplementary products are those
that can be purchased together. Figure 1 illustrates a toy example;
here, the main product of interest is an LG 4K TV. The substitute
is another 4K TV from a different brand and the supplements are
streaming devices such as Roku and Apple TV.

Given a collection of items and their reviews, the goal of this
paper is to learn the latent features of items that are indicative of the
relationship between items in terms of substitutes and supplements.
Recently, McAuley et al. [19] proposed an algorithm called Sceptre
that predicts the links between items in Amazon. Here, the authors
use latent dirichlet allocation (LDA) [2] to capture the content
information of items as a document-topic distribution θ and fit a
logistic model over θ to predict the relationship between items. The
model is trained by jointly optimizing the LDA and the logistic
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parameters. Despite being a successful model, Sceptre suffers from
several shortcomings that are detailed as follows: (a) Content
sparsity: Most reviews are extremely short and lack contextual
information. The inferior performance of LDA over short text is a
well known problem that has been studied by several researchers
[12, 20, 24]. (b) Limiting Topic Hierarchies: Sceptre assumes
that products are classified into a predefined hierarchy of topics
and the authors use this information to limit the number of topics
in LDA. However, this method has been widely criticized in the
topic modeling literature for overfitting and producing noisy word
clusters.

Deep learning has emerged as the state-of-the-art technique for
natural language processing, image analysis, and speech recogni-
tion due to its ability to learn representative features and capture
non-linear relationships in data [21]. Its prowess in feature learning
has enabled the applicability of deep learning models to a wide
array of problems, including link prediction and recommendation.
For example, [10] propose a neural collaborative filtering which
integrates matrix factorization with multi-layer perceptron for rec-
ommendation; [28] and [15] replace the LDA component of the
collaborative topic regression (CTR) model [26] with autoencoders
to improve the recommendation performance; Wang et al. [27] in-
vestigate relational deep learning for link prediction. Regardless of
these contributions, studies that exploit deep learning for inferring
item relationships is rather limited.

Therefore, in this paper, we investigate the novel problem of
exploiting deep learning algorithms for inferring item relation-
ships. We propose a novel generative deep learning model called
Linked Variational Autoencoder (LVA) that predicts the relation-
ship between items in terms of substitutes and supplements. This
is achieved by linking two variational autoencoders [13] and condi-
tioning the feature learning process on the observed link relationship
between items. The proposed model overcomes the drawbacks of
Sceptre in the following ways. First, LVA uses VAE to learn the con-
tent features of items; this mitigates the problems associated with
LDA. Second, unlike Sceptre that alternates between learning the
parameters of LDA and fitting a logistic model over the document-
topic distribution, LVA follows a full Bayesian approach. This is
achieved by directly conditioning the latent features of item-pairs
on their observed link relationship, which leads to better approxi-
mation of the parameters. In addition to the proposed LVA, we also
introduce an extension to our model by integrating LVA with prob-
abilistic matrix factorization (PMF) to create CLVA. CLVA combines
collaborative- and content-based information to provide personal-
ized recommendation. The major contributions are summarized as
follows:
• We propose a novel deep generative model called Linked Vari-
ational Autoencoder (LVA), which can simultaneously capture
item features and item relationships to facilitate substitute and
supplementary item prediction. LVA accurately predicts the link
between items even in the presence of cold start problem.
• We extend LVA by integrating LVA with PMF. The resulting
collaborative LVA (CLVA) can model user ratings in addition
to item features and item relations, which helps personalized
recommendation.
• By conducting extensive experiments on real-world datasets, we
demonstrate the effectivenss of LVA in various tasks such as

item link prediction, global recommendation and out-of-the-box
recommendations.

To the best of our knowledge, we are the first to propose linked
VAEs that learns the latent features of items by conditioning on the
observed relationship between items. These features not only capture
the content-representation, but also embed the link between items
in-terms of substitutes and supplements.

The rest of this paper is organized as follows. We introduce the
generative process of LVA model and the parameter inference in
Section 2. We extend LVA by integrating PMF to create the CLVA
model in Section 2.2. We conduct experiments in Section 3. Finally,
we review related work in Section 4 and conclude our paper with
future work in Section 5.

2 THE PROPOSED FRAMEWORK - LVA
Problem Formulation: Let {vi }V1 be the set of items and {Xv }V1
be the set of reviews for each item. Given a pair of items (Xa ,Xb )

and an observed label y indicating the relationship (i.e., substitutes
and supplements) and the direction of relationship between items
a and b, our objective is to learn the latent attributes Za and Zb

such that they explain the label y. The label y in our setting has
four categories that signifies the type of link and the direction of
link. Specifically, labels 1 and 2 denote the substitute link with
directions a → b and a ← b respectively and labels 3 and 4 denote
supplementary link with directions a → b and a ← b respectively.
The LVA Model: Figure 2 (a) shows the graphical structure of the
proposed Linked Variational Autoencoder (LVA), where the grey
nodes indicate the observed variables, neural network layer д (i.e.,
the function approximators ) are denoted by the green nodes, and
the white nodes denote the unobserved variables. The model has
two parts, (1) variational autoencoders (VAE), which is depicted
inside the red box and (2) the link predictor part, which is depicted
inside the blue box.

Table 1: List of notations used in this paper.
Symbol Description
U number of users
V number of items
X = |V | × |D | item-attribute matrix
y observed label for the latent features (Za, Zb )

Z latent attributes of item contents
ρ latent attributes items in CLVA
η latent attributes users
D set of item attributes
K number of latent attributes
W weights of the neural network
b bias vector of the neural network
θ weights of decoder network
ϕ weights of the encoder network

The latent attributes {Zvk }
K
k=1 of item v are learned using (VAE)

[13]. An autoencoder (AE) is a neural network trained to learn latent
representation that is good at reconstructing its input and VAE is a
probabilistic extension of AE, which models the attribute learning
process as a generative algorithm. Besides being an effective model
for learning feature representations, the probabilistic nature of VAE
facilitates seamless integration of other generative models such as



PMF. Algorithm 1 illustrates the generative process of LVA. In the
encoder part (lines 7-10), the mean µ and covariance Σ are drawn
from a normal distribution parameterized by the neural network д
with weightsW and bias vector b and the latent layer Z is sampled
from a normal distribution with parameters µ and Σ. Here, the
suffix a/b indicates the sampling operation for both items a and
item b. In the decoder part (lines 2-5), the features Xa and Xb are
reconstructed and the observed label y is drawn from a categorical
distribution parameterized by latent distributions of both Za and
Zb . It should be noted that since y is observed, due to the property
of common effect, there is a flow of influence from Za to Zb and
vice versa [14].

Algorithm 1: Generative process of the LVA model
1 Decoder:
2 for each item pair (a,b) ∈ V do
3 Draw Xa ∼ N(gL,a WL + bL , λ−1n IV )
4 Draw Xb ∼ N(gL,b WL + bL , λ−1n IV )
5 Draw label y ∼Cat(Za ,Zb ;WL)

6 Encoder:
7 for each item pair (a,b) ∈ V do
8 Draw µa/b ,∼ N(gL,a/bWµ+ bµ , λ−1n IK )
9 Draw Σa/b ,∼ N(gL,a/bWΣ+ bΣ, λ

−1
n IK )

10 Draw Za/b ∼ N(µa/b , Σa/b )

2.1 Parameter Inference - LVA
The input to LVA is a pair of item featuresXa andXb , which are the
set of reviews for items a and b respectively. The objective is to infer
Za and Zb , given the features of items and the label y of the item
pairs. In other words, we are interested in learning the probability
p(Za ,Zb |Xa ,Xb ,y), where y indicates whether the tuple (Xa ,Xb )

are supplements or substitutes and the direction of this relation.
There are two main challeges to estimating this posterior. First,
as with most bayesian models, there is no closed form solution
since the normalization factor is intractable to compute. Second,
since the label is observed, there is an implicit flow of influence
between the latent variables Za and Zb [14]. To overcome these
bottlenecks, we approximate the posterior using the method of
variational inference; additionally, we decouple the latent variables
by assuming that their variational distributions depend only on their
respective neural networks. Under these assumptions, the evidence
lower bound (ELBO) for our objective is defined as follows:

loд Pr (Xa ,Xb ,y) ≥ Eqϕ
[
loд Prθ (X

a |Za )+

loд Prθ (X
b |Zb ) + loд Prθ (Z

a ) + loд Prθ (Z
b )+

loд Prθ (y |Z
a ,Zb ) − loдqϕ (Z

a ,Zb |Xa ,Xb ,y)
]

(1)

the approximate posteriorqϕ (.) is assumed to have a fully factorized
form. The RHS of the above expression is expanded as follows:

Eqϕ (Z a |.)

[
loд Prθ (X

a |Za ) − D(qϕ (Z
a |Xa )| | Prθ (Z

a ))
]

+ Eqϕ (Zb |.)

[
loд Prθ (X

b |Zb ) − D(qϕ (Z
b |Xb )| | Prθ (Z

b ))
]

+ Eqϕ (Z a,Zb |.)

[
loдPrθ (y |Z

a ,Zb )
]

(2)

The above equation has three parts: the first part is the ELBO for
LVA with inputs Xa , the second is the ELBO for Xb and the third
is the classifier part of the model. Concisely, the above equation is
written as follows:

L(θa ,ϕa ) + L(θb ,ϕb ) + Eqϕ (Z a,Zb |.)

[
loд Prθ (y |Z

a ,Zb )
]

(3)

We adopt the reparameterization trick over L(θa ,ϕa ) to obtain
samples of z from an isotropic normal distribution. This results in
the following expression:

Eϵ∼N(0, I )
[
loд Prθ (x

a |za )
]
− D(qϕ (z

a |xa )| |Pr (za )) (3.1)

where xa are the attributes of a single item and za = µϕ (x) + ϵ ⊙
σϕ (x), ϵ ∼ N(0, I). The first part of the above equation is simply the
sum squared error. The second part is the KL divergence between
two multivariate gaussian distributions, which has a closed form
solution defined as follows:

D(qϕ (z
a |xa )| |Pr (za )) = −

1
2

(
tr
(
Σϕ (x

a )
)
+(

µϕ (x
a )
)T (

µϕ (x
a )
)
− loдdet

(
Σϕ (x

a )
) )

(3.2)

So far, we derived the first term of equation (3). The second term
(i.e, variational loss L(θb ,ϕb )) takes the same form as expression
(3.1) and the third term is the classifier part of LVA , which can
be realized using a softmax function. To be more specific, once we
sample the Zs for an item pair (a,b), the latent features become
the inputs of the classifier neural network where the label y can
be drawn from a softmax function. By substituting equations (3.1),
(3.2) along the softmax function in equation (3) the final objective
is given by:

V

M

M∑
i=1

[
−

1
2σ 2(x

a
i − µϕ (x

a
i ))

2 − Da −
1

2σ 2(x
b
i − µϕ (x

b
i ))

2 − Db

+ loд

(
eθ
(y)T z∑Y

j=1 e
θ (j )T z

)]
(4)

where Da and Db are the KL divergence terms of items a and b
respectively, V is the total number of data points (or items) andM
is the set of random samples drawn fromV . The LVA can be trained
by taking the gradients of the above expressions w.r.t parameters θ
and ϕ and updating these parameters over multiple epochs using
stochastic gradient-ascent.

2.2 Infusing Personalization
Collaborative LVA: As explained in Section 1, LVA is not per-
sonalized model; in the sense, the recommendations provided by
LVA is same for all users. Therefore, in Figure 2 (b), we extend
LVA to CLVA that incorporates user information in the form of
collaborative filtering to personalize the recommendation of substi-
tutes and supplements. This framework adopts the formulation of
[28] and [15], where the authors modify the topic modeling part
of collaborative topic regression (CTR) [26] with a deep learning
model. CLVA embeds the content information of items along with
the collaborative filtering by integrating LVA with probabilistic ma-
trix factorization (PMF). In Figure 2 (b), the LVA is depicted inside
the red box and the PMF part is depicted inside the blue box. The



Figure 2: Graphical structure of the proposed models (a) shows the base LVA, where the function д(.) indicates the neural
network component and (b) shows the collaborative LVA model with the PMF component.

generative process of LVA remains similar to Algorithm 1, while
the generative process of PMF is described as follows:
1. For each item v ∈ V do:
(a) draw latent features Zbv ∼ N(µ, Σ)
(b) draw offset ϵv ∼ N(0, λ−1v IK ) and set ρ = ϵ + Zbv

2. For each user u ∈ U do: Draw η ∼ N(λ−1u Ik )

3. For each user-item pair (u,v) do: Draw Ru,v ∼ N(ρ
T η, c−1u,v )

Similar to CTR, the key property lies in how the item latent attribute
ρv is generated. The term ρ = ϵ + Zbv signifies that item latent
attribute ρv is close to topic proportions Zb , but could diverge
from it if it has to. This divergence is introduced by the offset ϵ ,
which captures the collaborative filtering-based features.

2.3 Parameter Inference - CLVA
The objective is to infer the posterior P(Za ,Zb ,η, ρ |Xa ,Xb ,y). Sim-
ilar to LVA, we proceed by defining the ELBO for CLVA as follows:

LMAP∗ (ρ,η,θ ,ϕ) =

Eq
[
loд Pr (Za ,Zb ,η, ρ,R,y,Xa ,Xb ) − loдq(η, ρ,Za ,Zb )

]
(5)

Contrary to LVA, in CLVA, we have a variational distribution
over four latent variables. However, since the primary objective
of this paper is to introduce a deep generative model for link pre-
diction, we simplify the estimation by considering the variational
distribution over Za and Zb . By expanding the likelihood term of
the above expression we obtain the following:

Eqϕ
[
loд Prθ (X

a |Za ) + loд Prθ (X
b |Zb ) + loд Prθ (Z

a )+

loд Prθ (Z
b ) + loд Prθ (y |Z

a ,Zb )
]
+ Eqϕ

[
loд Prθ (ρ |Z

b )+

loд Pr (R |ρ,η) + loд Pr (η)
]
− Eqϕ

[
loдqϕ (Z

a ,Zb |Xa ,Xb ,y)
]
(6)

where L(LVA) is the ELBO of the LVA model from equation (4).
From the above expression, one can observe that the evidence lower
bound of CLVA remains very similar to that of LVA (see equation 1).
The only major difference between these two models is the second
term inside the expectation, which embeds the PMF component
into the LVA model. Substituting the corresponding distributions
in the above equation we obtain the following MAP estimate:

LMAP∗ (ρ,η,θ ,ϕ) = L(LVA) −
∑
u,v

Cu,v

2
(Ru,v − η

T
u ρv )

2−

λη

2

∑
u
| |ηu | |

2
2 −

λρ

2

∑
v

Eqϕ (Zb |.) | |ρv − Z
b
v | |

2
2 (7)

Readers should note that it is not strictly a MAP estimate since we
still infer parameters Za and Zb using a variational distribution.
Hence, we denote the above expression as LMAP∗ .

3 EXPERIMENTS
In this section, we perform a rigorous series of quantitative and
qualitative experiments over various datasets and test cases to
evaluate the proposed model. The parameter setting for LVA model
is as follows: batch size = 512, latent attributesZ = 100, epochs = 70
and weights for the VAE network is set as 0.3 and the classifier
network as 0.9. For CLVA the model settings for the PMF part are as
follows: number of latent user attributes η = 5, number of item user
attributes ρ = 5. For all our experiments, we user 80% of the data
for training, 10% for validation and 10% for testing. The models are
implemented using Keras with Tensorflow as backend. A working
code of LVA can be downloaded from our Github repository1.

3.1 Dataset
For our experiments, we obtain the co-purchase data of items in
Amazon from McAuley et al. [19]. The actual co-purchase data
comprises of twenty different product categories. Nonetheless, for
our experiments, we select products from five different categories
that are decided based on the number of reviews: (1) categories
with largest collection of reviews namely, Books, Electronics and
Movies and (2) categories with sparse set of reviews namely, Men’s
Clothing andMusical Instruments. Given a pair of productsA and B,
the dataset defines four types of links between these products. An
item B is deemed as a substitute of item A based on the following:
(a) users who viewed A also viewed B, or (b) users who viewed
item A eventually bought item B. Alternatively, an item B is a
supplement of item A based on the following: (a) users who bought
A also bought B, or (b) users frequently bought A and B together.
To prepare the dataset for our experiments, we perform some basic

1https://github.com/VRM1/WSDM19



Table 2: Dataset Statistics of item reviews, links and users
used for our experiments.

Dataset ItmRevs Links #Users
Books 966K 10.7M 8M

Electronics 349K 5.6M 4.2M
Men’s Clothing 158K 966K 3.1M

Movies 145K 2.8M 2M
Musical Instr 67K 1.1M 339K

pre-processing steps such as lematizing, stemming and removing
reviewers which have less than ten words. The statistics of the
resulting dataset is shown in Table 2.

3.2 Baselines
We compare the performance of our model with four representative
and state-of-the-art baseline methods for item link prediction:
Random: The random baseline is a modification of the Sceptre
model [19], where the link probabilities Fβ and Fη are replaced with
random numbers between 0 and 1. This implies the parameters of
the logistic predictor are not learned; thereby making the prediction
of substitutes and supplements completely random.
Logit-LDA: Unlike LVA which jointly learns the topic distribution
and the link relationship between items, the logistic LDA (abbre-
viated as Logit-LDA) first learns the item-topic distribution θ of
reviews by independently training an LDA model on item reviews.
It then trains logistic classifiers on θ to predict the relationship
between items. The topic model is trained with K = 150 topics.
RTM: Introduced by Chang et al. [4], the relational topic model
(RTM) is a hierarchical model that is specifically designed to in-
fer the relationship between networks of documents. Given a pair
of documents, RTM explicitly ties the content of the documents
with the connections between them. In other words, the inferred
latent topic space of items are conditioned on the observed link
relationship; in our case, the relationship is quantified as substi-
tutes and supplements. The number of topics K was set to 20 and
hyperparameters α was set to 0.1.
Sceptre: The state-of-the-art model for predicting relationship be-
tween products in terms of substitutes and supplements [19]. Scep-
tre fits a logistic classifier over the topic space of LDA, which not
only learns the relationship between items, but also the direction
of relationship to predict whether A is a substitute/supplement of
B and vise versa. The model has been shown to produce high pre-
diction accuracy while being highly scalable to millions of reviews
and product relations.

3.3 Evaluation Methedology
We categorize the evaluation into two tasks: (a) prediction, and
(b) recommendation. For the first task, the model should not only
predict whether a given pair of items are substitutes or supplements,
but also the direction of the link. The test accuracy is determined
by comparing the predicted relations with the ground truth to
determine the number of true positives and false positives. For the
second task, we recommend a limited number of substitutes and
supplements. The evaluation of recommendation is divided into two
types: (a) using LVA and CLVA, recommend a global set of items
that is same for every user in our database (i.e., unpersonalized)
and (b) using CLVA, recommend items on a local level where each

user in our database gets a personalized suggestion of substitutable
and supplementary items. In global recommendation, we rank the
set of substitutes and supplements according to their probability,
and recommend top K items. Both forms of recommendation are
evaluated using precision@K , which is defined as the fraction of
rankings in which the true recommend items are ranked in the top-
K positions. Experiments are performed by splitting the data into
80% for training, 10% for validation, and 10% for test. The reported
results are based on a 5-fold cross validation technique.

3.4 Link Prediction
Table 3 compares the accuracy scores of LVA along with other
baselines. Overall, one can observe that LVA outperforms all other
baselines with significant gains over Logit-LDA and RTM. The per-
formance of LVA is also extremely consistent over all datasets with
an accuracy of over 90%. While Sceptre produces slightly better
results over Men’s clothing, LVA reigns superior over rest of the
categories. The biggest difference in performance between these
two models is exhibited over books and movies with LVA clearly
leading Sceptre with a boost of 5%-10% in accuracy. A plausible ex-
planation to this outcome could be the inferior performance of the
LDA topic model that in used in Sceptre to learn the content-based
features of items. Books and movies are one of the largest review
corpus in our database with millions of user reviews. Since most
reviews are usually very short, the lack of word co-occurrence se-
verely hampers the learning abilities of LDA by inducing problems
such as overfitting, and noise in topic distributions [20]. It is also
important to note that both Logit-LDA and RTM are very good
in predicting substitutes, but the accuracy is significantly lower
for supplementary items. This is because, items that serve as sub-
stitutes are usually from the same category (i.e., Xbox could be a
substitute for PS4), while items that serve as supplements could
be from a broad range of categories. For example, for an Xbox,
supplements could be items such as wireless speakers, protection
case, game cds, etc. This outcome also co-insides with the paper
by Mcgure et al. [19], who reported similar observations. Another
interesting outcome is the performance between Logit-LDA and
RTM. RTM outperforms Logit-LDA by 2− 3% over all datasets. This
clearly demonstrates how conditioning the latent space over ob-
served link relationship and jointly learning the label distribution
and item-topic distribution is essential for our problem.

3.5 Prediction in Cold Start Scenario
So far, we showed that LVA is capable of predicting substitutes
and supplementary links between items with high accuracy. As
impressive as it may be, these results are for items that have a
certain number of user reviews. However, this is not the case always,
when an item is new to the marketplace, the user reviews are
completely absent; this translates to the well-known problem of
cold start. To overcome this bottleneck, we extract other meta-data
information about the products. For instance, information such as
title and product description from themanufacturer are available for
most items in the Amazon database. Therefore, instead of reviews,
we use the meta-data as features to train our model. The results
of this experiment are shown in Table 4. One can observe that
LVA is able to accurately predict the link even with the lack of



Table 3: Performance comparison of LVA in terms of the accuracy scores, where “All Links" denote both substitutable and
supplementary links. LVA clearly outperforms Sceptre in four out of five categories with largest gain over Books and Movies.

Dataset Accuracy Random Logit-LDA Rel-LDA Sceptre LVA

Books
Substitute 65.43% 83.37% 86.07% 93.41% 95.71%
Supplement 55.81% 68.32% 68.91% 86.82% 92.07%
All Links 57.12% 72.28% 74.07% 89.45% 94.2%

Electronics
Substitute 64.92% 90.17% 88.75% 95.73% 95.47%
Supplement 55.38% 65.43% 69.21% 88.11% 91.18%
All Links 58.48% 70.04% 72.27% 90.59% 92.36%

Men’s
Clothing

Substitute 59.44% 72.32% 74.17% 95.63% 92.82%
Supplement 57.19% 66.04% 68.12% 94.42% 93.18%
All Links 57.67% 69.39% 71.23% 94.36% 93.11%

Movies
Substitute - - - - -
Supplement 50.32% 55.14% 60.43% 86.01% 95.63%
All Links 50.32% 54.64% 61.21% 86.19% 95.63%

Musical
Instruments

Substitute - - - - -
Supplement 50.04% 58.19% 60.56% 90.22% 93.47%
All Links 50.04% 57.11% 60.51% 89.84% 93.05%

Average Score for All Links 54.72% 64.69% 67.85% 90.08% 93.67%
LVA performance gain 38.98% 28.98% 25.82% 3.59%

Table 4: Performance of Sceptre and LVA over cold start
items. Both models provide a high accuracy despite the lack
of reviews.

Dataset Accuracy Sceptre LVA

Books Substitute 93.41% 93.11%
Supplement 91.14% 93.51%

Electronics Substitute 91.35% 94.87%
Supplement 90.81% 92.02%

Men’s
Clothing

Substitute 96.42% 95.55%
Supplement 96.88% 96.19%

reviews. Following a trend similar to Table 3, LVA lags slightly
behind Sceptre for men’s clothing, but delivers better accuracy over
electronics and books. Due space constraints, we only show the
results for three categories; however, in our testing, the performance
over other categories was in the range of 90-95%.

3.6 Global Recommendation
Recommendation in our setting is incredibly difficult since, for a
given item, there are probably thousands of pairs of substitutable
and supplementary items. Nevertheless, when recommending items
to users, we have to show a limited set of items that are of highest
interests to users. Figure 3 reports the precision scores of LVA and
CLVA along with other baselines. The candidate links used for train-
ing are discarded from the test data. The collaborative filtering (CF)
baseline is obtained by independently training the PMF component
of CLVA. The random baseline has a precision in the range of 10−5
to 10−4, which proves that obtaining high precision scores in our
scenario is incredibly difficult. Both LVA and CLVA are better than
PMF by more than an order-of-magnitude; this shows that collab-
orative features captured by PMF is not sufficient to recommend
substitutes and supplementary items. Contrary to the results of link
prediction (Table 3), the performance of Sceptre is very close to the
proposed LVA. LVA is able to achieve a precision of up to 12% for

(a) Men’s Clothing(Substitute) (b) Men’s Clothing(Supplement)

(c) Electronics(Substitute) (d) Electronics(Supplement)

Figure 3: Precision performance for global recommenda-
tion.

men’s clothing, while CLVA outperforms its counterpart with a pre-
cision of 17%. Although the independent use of PMF did not yield
a good performance, integrating collaborative information in LVA
certainly boosts its performance. Additionally, the performance
of all the models are lower for the electronics domain. A possible
reason for this outcome can be attributed to the size of dataset,
where the number of unique items in electronics are significantly
higher than men’s clothing, which in-turns affects the ranking.

3.7 User-Based Recommendation
In the previous section, we reported the results of global recom-
mendation, where every user gets the same set of items irrespec-
tive of their personal preference. In other words, the models were
trained and tested purely on an item-level that excluded the user



Figure 4: Precision performance for user-based recommen-
dation.

Figure 5: Recall performance for user-based recommenda-
tion.

information. Here, we report the performance of user-level (or per-
sonalized) recommendation by comparing CLVA with LVA, PMF
and CVAE [16]. CVAE is a hybrid generative model which learns
deep latent representations from content data in an unsupervised
manner and also learns implicit relationships between items and
users from both content and rating. It can be treated as a variant of
CLVA without considering substitute and supplementary informa-
tion. Our objective is to see whether integration of collaborative
with content-based features and link information improves the
recommendation of substitutable and supplementary items. The
outcome of this experiment is depicted in Figures 4 and 5 respec-
tively. From the results, it is quite apparent that CLVA leads to
better precision and recall across all datasets. Specifically, when it
comes to precision, CLVA is atleast an order-of-magnitude better
than LVA. Although LVA outperforms PMF, when compared to
global recommendation (Figure 4), the difference is not significant.
This is because LVA does does not incorporate any form of user
information whereas PMF is able to leverage collaborative features
to boost its performance. Finally, it is interesting to note that when
it comes to recommending substitutes and supplements, the state-
of-the-art collaborative variational autoencoder (CVAE) is no better
than the traditional PMF.

3.8 Out-of-the-Box Recommendation
Amazon has several million items; nonetheless, only a fraction of
them have co-purchase information. Therefore, there are several
unexplored set of items that could serve as viable alternative or
addition to the main item of interest. Our goal is to recommend sub-
stitutes and supplements that are not present in the actual ground
truth. To achieve this, given a product of interest, we adopt the
following steps: (1) select a set of products Vc from the same cat-
egory c as that of the main product of interest, (2) remove items
from Vc for which there are ground truth information, and (3) use
LVA to predict and rank the link probabilities for substitutable and
supplementary products. Figure 6 reports the qualitative results
of this experiment for three product categories. In block A, the
main product of interest is the Canon 5D mark II camera and the
supplement is a camera bag and a photo frame, which are very
logical and intuitive suggestions. For substitutes, the model recom-
mends cameras from other brands such as Nikon D800 and Sony
A7r, which are both recent products when compared to the old 5D
mark II. For Men’s clothing (block B), the main product of interest
is a Jeans pant and the supplements for this item are t-shirt and belt.
On the other hand, we observed that Amazon’s recommendation
for this item is a series of pants of different styles. Contrary to this,
our model is able to recommend out-of-box recommendation that
are both interesting and meaningful. Additionally, for substitutes,
not only does our model recommend jean pants, but also a type
that matches with the main product of interest that are signified by
the words such "regular fit" and "straight-fit". Finally, in block C,
we see the recommendations for Yamaha portable piano where the
supplements are MIDI synthesizer and an album of Mozart’s solo
compositions, both of which are extremely unique and useful.

4 RELATEDWORK
The study presented in this paper is related to the following research
areas: (1) link prediction and (2) deep hybrid recommendation. We
now briefly discuss these topics from a perspective of generative
modeling.
Link Prediction Models: Cohn et al. [5] proposed one of the
earliest generative models for link prediction in citation networks.
Here, the interdependencies between documents is viewed as a
mixture model that simultaneously decomposes the contingency
tables associated with word occurrences and citations/links into
topic factors. In [7], the authors propose a variation of this model by
replacing probabilistic latent semantic analysis (PLSA) with latent
dirichlet allocation (LDA) and [4] use supervised version of LDA to
create relational topic model; [17] and [11] incorporate community
information into topic models or predicting hyperlinks between
documents. Besides textual content, researchers have also tried
incorporating other heterogeneous features such as image, time, and
location for link prediction [9, 18, 19, 22, 23, 30]. For example, He et
al. [9] learn heterogeneous relationships between items with high-
level visual features, [22] exploit both the vertical and horizontal
feature hierarchy of items to capture latent relationships that could
be used to better characterize user-item interactions.
Deep Hybrid Recommendation Models: The core of all recom-
mender systems is to obtain a utility function that estimates the
preference of a user towards an item. Essentially, recommender
systems can be divided into three main techniques: content-based,



Figure 6: Out-of-Box recommendation of unseen product relations. LVA is able to provide meaningful and interesting items
as substitutes and supplements.

collaborative filtering and hybrid methods. For a comprehensive
summary on these techniques, readers are suggested to survey the
following aritcles [1, 3, 6]. Recent trend in hybrid recommendations
involve the integration of deep learning with matrix factorization
(MF) models to capture both implicit and explicit features from
data [8, 25, 28, 29, 31]. In [28], the authors transform the framework
of collaborative topic regression (CTR) model into a deep learning
framework by replacing the LDA part of CTR with stacked denois-
ing autoencoders (SDAE) [25]. [15] propose a similar framework,
but instead of using SDAE they infer content features using a varia-
tional auto encoder (VAE); [16] introduce a CF model that is purely
based on VAE. A detailed survey of the latest Deep Learning based
techniques for recommender systems can be found in [33].

The research that is closest to our work is a link prediction
model called Sceptre that leverages the co-purchasing behavior of
users to recommend substitutable and supplementary items [19].
Sceptre learns the content features of items using LDA and fits
a logistic function over the document-topic features. The main
strength of their model is its high prediction accuracy and scalability.
Despite being a successful model, Sceptre suffers from the following
shortcomings:
1. LDA is extremely inferior in learning meaningful features from

short reviews [12, 24].
2. Sceptre restricts the number of topics in LDA with predefined

hierarchy of product categories, which leads to problems such as
overfitting and producing noisy word clusters.

3. The proposed model is not personalized; in the sense, the recom-
mendations provided by Sceptre is same for all users.

Our model overcomes the drawbacks of Sceptre in the following
ways. First, LVAE uses variational autoencoders (VAE) [13] to learn
the content features of items, which overcomes the problems as-
sociated with LDA and results in better link prediction accuracy.
Second, LVAE is extended to CLVAE, which induces personalization
into the prediction model. Third, unlike Sceptre, which alternates

between learning the parameters of LDA using variational inference
and fitting a logistic model over the document-topic distribution,
LVAE follows a full Bayesian approach, which leads to better ap-
proximation.
5 CONCLUSION AND FUTUREWORK
In this paper, we understand the relationship between items in
Amazon e-commerce domain to recommend auxiliary items that
can serve as substitutes or supplements to the main item of interest.
Formally, given a network of items, reviews and their relationship
(i.e., substitutes and supplements), the goal of this paper is to learn
the latent features of items that are indicative of this relationship.
To achieve this, we propose a generative deep learning model called
Linked Variational Autoencoder (LVA) that predicts the relation-
ship between items in terms of substitutes and supplements. This is
achieved by learning the latent features of items by conditioning on
the observed relationship between items. We then extend LVA with
probabilistic matrix factorization (PMF) to create CLVA model that
combines collaborative- and content-based information to provide
personalized recommendation. Using a rigorous series of exper-
iments, we show that LVA produces a very high link prediction
accuracy of over 92% on all datasets and performs exceptionally
well in cold start scenario. Additionally, the personalization induced
in the form of collaborative filtering boosts the performance of LVA
in recommending substitutes and supplementary items on a user
level. In the future, we plan to extend our work by incorporating
the following extensions: (a) leverage auxiliary information in the
form of images, (b) extend our link prediction task to predict sup-
plements and substitutes based on the style-based features of items
and (c) model more complex dependencies to capture sequence of
relations between products.
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