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a b s t r a c t 

Semi-supervised learning is attracting increasing attention due to the fact that datasets 

of many domains lack enough labeled data. Variational Auto-Encoder (VAE), in particu- 

lar, has demonstrated the benefits of semi-supervised learning. The majority of existing 

semi-supervised VAEs utilize a classifier to exploit label information, where the param- 

eters of the classifier are introduced to the VAE. Given the limited labeled data, learn- 

ing the parameters for the classifiers may not be an optimal solution for exploiting label 

information. Therefore, in this paper, we develop a novel approach for semi-supervised 

VAE without classifier. Specifically, we propose a new model called Semi-supervised Dis- 

entangled VAE (SDVAE), which encodes the input data into disentangled representation 

and non-interpretable representation, then the category information is directly utilized to 

regularize the disentangled representation via the equality constraint. To further enhance 

the feature learning ability of the proposed VAE, we incorporate reinforcement learning to 

relieve the lack of data. The dynamic framework is capable of dealing with both image and 

text data with its corresponding encoder and decoder networks. Extensive experiments on 

image and text datasets demonstrate the effectiveness of the proposed framework. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The abundant data generated online every day has greatly advanced machine learning, data mining and computer vision

communities [41,48] . However, manual labeling of the large dataset is very time- and labor-consuming. Sometimes, it even

requires domain knowledge. The majority datasets are with limited label. Therefore, semi-supervised learning, which utilizes

both labeled and unlabeled data for model training, is attracting increasing attention [3,11,17,31,45] . Existing semi-supervised

models can be generally categorized into three main categories, i.e., discriminative models, generative models, and graph-

based models, plus combinations of such categories [5,10,32,40,43] . 

Among various semi-supervised models proposed, the semi-supervised generative models based on variational auto-

encoder (VAE) have shown strong performance in image classification [17,27] and text classification [24,45] . The effectiveness

of VAE for semi-supervised learning comes from its efficiency in posterior distribution estimation and its powerful ability in

extracting features from text data [1] and image data [17,27] . To adapt VAE for semi-supervised learning, the semi-supervised

VAEs are typically composed of three main components: an encoder network q φ( z | x, y ), a decoder p θ ( x | y, z ) and a classifier
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q φ( y | x ). In the application, the encoder, decoder, and classifier can be implemented using various models, e.g., Multilayer

Perceptron (MLP) or Convolutional Neural Network (CNN) [27,46] . Though the classifier plays a vital role in achieving the

semi-supervised goal, it introduces extra parameters of itself to learn. With the limited labeled data, it may not be an op-

timal choice to introduce more parameters to VAE for semi-supervised learning because it may memorize the limited data

with large quantities of parameters, namely overfitting. 

Therefore, in this paper, we investigate if we can directly incorporate the limited label information to VAE without in-

troducing the non-linear classifier so as to achieve the goal of semi-supervised learning. In particular, we investigate the

following two challenges: (1) Without introducing a classifier, how do we incorporate the label information to VAE for

semi-supervised learning? and (2) How can we effectively use the label information for representation learning of VAE?

In an attempt to solve these two challenges, we propose a novel semi-supervised learning model named semi-supervised

disentangled VAE (SDVAE). SDVAE adopts the VAE with Karush–Kuhn–Tucker (KKT) conditions [21] as it has better represen-

tation learning ability than VAE. Unlike existing semi-supervised VAEs that utilize classifiers, SDVAE encodes the input data

into disentangled representation and non-interpretable representation, and the category information is directly utilized to 

regularize the disentangled representation as an equality constraint, and the classification results can be obtained from the

disentangled representation directly. As the labeled data is limited, the labeled information may not affect the model much.

To this end, we further change the equality constraint into the reinforcement learning format, which helps the objective

gain the category information heuristics. The inverse auto-regression (IAF) [18] is also applied to improve the latent variable

learning. The proposed framework is flexible in which it can deal with both image and text data by choosing corresponding

encoder and decoder networks. The main contributions of the paper are: 

• Propose a novel semi-supervised framework which directly exploits the label information to regularize disentangled rep-

resentation with reinforcement learning; 

• extract the disentangled variable for classification and the non-interpretable variable for the reconstruction from the data

directly; and 

• conduct extensive experiments on image and text datasets to demonstrate the effectiveness of the proposed SDVAE. 

2. Related works 

In this section, we briefly review related works. Our work is related to semi-supervised learning, semi-supervised VAE,

and variants of VAEs. 

2.1. Semi-supervised learning 

Semi-supervised learning is attracting increasing attention, and a lot of works have been proposed in this field

[5,9,17,31,32,38,43,45] . Those works can be generally divided into four categories, i.e., discriminative models [3,10,13,40] ,

generative models [1,9,17,31,45] , graph-based models [5,38] , and the combination of those [4,5] . The discriminative models

aim to train a classifier that is able to find the hyperplane that separates both the labeled data and the unlabeled data

[10,13,40] . The generative model tries to inference the posterior distribution based on the Bayesian theory, then the label of

data can be estimated based on the generative distribution [1,17,31] . The nature of the graph-based model is the label prop-

agation. After calculating the distance between unlabeled data and labeled data, the label of unlabeled data can be decided

by the nearest labeled data [5,33,38] . Many works combine two or three models from different categories so as to take their

advantages [4,5] . For example, He et al. [5] investigated the generative model under the graph-based framework [5] ; Fujino

et al. [4] studied semi-supervised learning with hybrid generative/discriminative classifier based on the maximum entropy

principle. Recently, semi-supervised learning based on VAE has shown promising performance and has attracted increasing

attention. Next, we will introduce semi-supervised VAE. 

2.2. Semi-supervised VAE 

Because of the effectiveness of deep generative models in capturing data distribution, semi-supervised models based on

deep generative models such as generative adversarial network [36] and VAE [17] are becoming very popular. Various semi-

supervised models based on VAE are proposed [17,45] . A typical VAE is composed of an encoder network q φ( z | x ) which

encodes the input x to latent representation z , and a decoder network p θ ( x | z ) which reconstructs x from z . The essential

idea of semi-supervised VAE is to add a classifier on top of the latent representation. Thus, the semi-supervised VAEs are

typically composed of three main components: an encoder network q φ( z | x, y ), a decoder p θ ( x | y, z ) and a classifier q φ( y | x ).

For example, Semi-VAE [17] incorporates learned latent variable into a classifier and improves the performance greatly.

SSVAE [45] extends Semi-VAE for sequence data and also demonstrates its effectiveness in the semi-supervised learning on

the text data. The aforementioned semi-supervised VAE all use a parametric classifier, which increases the burden to learn

more parameters given the limited labeled data. Therefore, in this work, the proposed framework incorporates the label

information directly into the disentangled representation and thus avoids the parametric classifier. 
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2.3. Variants of VAE 

Because of the great potential of VAE in image and text mining, various models based on VAE are proposed to further

improve its performance [6,8,18,19] . For example, Higgins et al. [6] apply the KKT condition in the VAE, which gives a tighter

lower bound. Similarly, Burda et al. [2] introduce importance weighting to VAE, which also tries to give a tighter bound. Pu

et al. [34] consider the stein based sampling to minimize the Kullback–Leibler divergence (KL). Hoffman et al. [8] rewrite the

evidence lower bound (ELBO) objective by decomposition, and give a clear explanation of each term. To extend the flexible

of posterior inference, IAF is introduced [18] which improves the VAE a lot. 

In this paper, SDVAE belongs to the combination of generative model and discriminative model, after estimating the

posterior distribution of the data, an equality constraint on disentangled representation is added to guide the learning of

the latent representation, together with heuristic inference, SDVAE is more effective in semi-supervised learning both in text

and image data. 

3. Preliminaries 

In this section, we introduce preliminaries that will be useful to understand our model, which mainly cover details of

VAE, VAE with KKT condition and semi-supervised VAE. 

3.1. Variational Auto-Encoder 

VAEs have emerged as one of the most popular deep generative models. One key step of VAE is to evaluate p θ ( x ), which

can be interpreted as 

log p θ (x ) = KL (q φ(z| x ) || p θ (z| x )) + L (θ, φ; x ) (1)

where KL ( Q || P ) is KL between two distributions Q and P, L ( θ , φ; x ) is the ELBO which is defined as 

L (θ, φ; x ) = E q φ (z| x ) (− log q φ(z| x ) + log p θ (x, z)) (2)

The term q φ( z | x ) is to extract latent feature from the observed data x and it is called encoder generally. By minimizing KL,

we try to find q φ( z | x ) that can approximate the true posterior distribution p θ ( z | x ). Because L ( θ , φ; x ) is non-negative and

log p ( x ) is fixed, then minimizing KL ( q φ( z | x )|| p θ ( z | x )) is equivalent to maximizing L ( θ , φ; x ). We can rewrite L ( θ , φ; x ) as 

L (θ, φ; x ) = E q φ (z| x ) log p θ (x | z) − KL (q φ(z| x ) || p θ (z)) (3)

where the first term in the RHS of Eq. (3) is the reconstruction error (RE), and the second term in the RHS is the KL

between the prior and the posterior. Those two values play different roles during the approximation. We will introduce

them in details in the next section. 

3.2. VAE with KKT condition 

In practice, we find that the RE is usually the main error, while the term of KL is regarded as the regularization to

enforce q φ( z | x ) to be close to p θ ( z | x ), which is relatively small. If we constrain the KL term into a small component ε to gain

a tighter lower bound, the goal is transformed to maximize the RE, namely max θ,φ E q φ (z| x ) log p θ (x | z) [6] . Then the objective

function is changed with the inequality constraint: 

max 
θ

E q φ (z| x ) log p θ (x | z) 
subject to KL (q φ(z| x ) || p θ (z)) < ε (4)

Then it changes to the optimization problem with the inequality constraints which can be solved by KKT, since λ and ε
are the nonnegative values. Under the KKT condition, Eq. (4) can be rewritten as follows: 

ˆ L (θ, φ; x, λ) = E q φ (z| x ) log p θ (x | z) 
− λ(KL (q φ(z| x ) || p θ (z)) − ε) 

(5)

where ˆ L is the energy free objective function which can be regarded as the convex optimization problem, and λ> 0 is the

Lagrangian multiplier, which is used to penalize the deviation of the constraint KL ( q φ( z | x )|| p θ ( z )) ≤ ε. Given that λ> 0 and

ε > 0, we have 

ˆ L (θ, φ; x, λ) ≥ E q φ (z| x ) log p θ (x | z) − λKL (q φ(z| x ) || p θ (z)) (6)

If λ = 1 , then Eq. (6) reduces to the original VAE problem that proposed by Kingma et al. [19] . However, if 0 < λ< 1, then
ˆ L (θ, φ; x, λ) > L (θ, φ; x ) , which is closer to the target log p θ ( x ). This is just the mathematical description of the fact that the

more information in the latent variable z , the tighter of the lower bound is. Through the KKT condition, a loose constraint

over the decoder is introduced. Empirical results show that VAE with KKT condition performs better than original VAE. Thus,

in this paper, we use VAE with KKT condition as our basic model. 
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3.3. Semi-supervised VAE 

When there is label information y in the observed data, it is easy to extend Eq. (6) to include label information as follows

[17] . 

ˆ L (θ, φ; x, y, λ) ≥ E q φ (z| x,y ) log p θ (x | z, y ) 
+ λ( log p(y ) + log p(z) − log q φ(z| x, y )) (7) 

To achieve the semi-supervised learning, Kingma et al. [17] introduce a classifier q φ( y | x ) to Eq. (7) , which results in 

U(θ, φ, y ; x, λ) = 

∑ 

y 

q φ(y | x ) ̂ L (θ, φ; x, y, λ) + H(q φ(y | x )) (8) 

Apart from the Eqs. (7) and (8) , the classification loss over the label information E p ( x, y ) log q φ( y | x ) is added into the objective

function when facing with the labeled data. However, in this paper, the discriminative information is added from scratch

and an equality constrained VAE is proposed, in order to highlight the contribution of labeled data. 

4. The proposed framework 

In this section, we introduce the details of the proposed framework. Instead of using a classifier to incorporate the label

information, we seek to directly use label information to regularize the latent representation so as to reduce the number of

parameters. 

4.1. Disentangled representation 

In order to incorporate the label information to the latent representation, we assume that the latent representation can

be divided into two parts, i.e., the disentangled variable and non-interpretable variable. The disentangled variable captures

the categorical information, which can be used for prediction task. Therefore, we can use label information to constrain

the disentangled variable. The non-interpretable variable can be a vector comprised of any dimensions that combine other

uncertain information from the data. For the simplicity of notation, we use u to denote the non-interpretable representation

and v to denote the disentangled variable. With u and v , the encoder can be rewritten as q φ( u, v | x ). We further assume that

the disentangled variable and the non-interpretable variable are independent condition on x , i.e., 

q φ(u, v | x ) = q φ(u | x ) q φ(v | x ) (9)

It is a reasonable assumption because given x , the categorical information is only dependent on x and v , which captures

the categorical information, is independent of u given x . This means that there is seldom information about the category

information in u , which is validated in the experiment part. 

Now q φ( u | x ) is the encoder for the non-interpretable representation, and q φ( v | x ) is the encoder for the disentangled

representation. Based on those assumptions, Eq. (7) is written as: 

ˆ L (θ, φ; x, λ) ≥ E q φ (u | x ) ,q φ (v | x ) log p θ (x | u, v ) 

+ λ( log p(v ) + log p(u ) − log q φ(u | x ) − log q φ(v | x )) 
= RE (u, v ) − λ(KL u + KL v ) (10) 

where RE (u, v ) = E q φ (u | x ) ,q φ (v | x ) log p θ (x | u, v ) , which represents the RE given the variables ( u, v ). KL u and KL v denote the

KL ( q φ( u | x )|| p ( u )) and KL ( q φ( v | x )|| p ( v )) respectively. From the above equation, we can see that the categorical information

is extracted from the data, i.e., captured in disentangled variable v . Now if we have partial labels given, we can directly use

the label information to regularize v . 

With v capturing the categorical information, there are many ways to regularize v . Inspired by the work of Higgins

et al. [6] , we add equality constraint on v over the ELBO, where the equality constraint is to enforce the disentangled

representation v to be close to the label information y . In this work, we consider two ways to add the constraint over the

ELBO as discussed below. 

4.2. SDVAE-I 

The first way we consider is the cross entropy between y and v , i.e., 

U = 

| y | ∑ 

i 

y i log q φ(v i | x ) (11) 

where y is the observed one-hot label coding, and | y | is the category number, q φ( · ) is encoder for the disentangled variable

v . This is a popular loss function for supervised learning and does not introduce any new parameters. Therefore, we choose



Y. Li, Q. Pan and S. Wang et al. / Information Sciences 482 (2019) 73–85 77 

 

 

 

U

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

this as the loss function for regularizing the disentangled variable v . We name this method Semi-supervised Disentangled

VAE I (SDVAE-I). By adding this loss function to Eq. (10) , the objective function of SDVAE-I is given as: 

ˆ L (θ, φ; x, λ, μ) ≥ RE (u, v ) − λ(KL u + KL v ) + μU 

(12)

where μ is the weight parameter to control the contribution of U . For the unlabeled data, the equality condition will be

 = 0 . 

4.3. SDVAE-II 

The drawback of the SDVAE-I is obvious because the training results depend on the number of the labeled data heavily.

However, for semi-supervised learning, there is usually a small size of the labeled data available. Thus, it is hard for the

disentangled variable to capture the category information. To this end, inspired by the idea in [45] , we use REINFORCE

process to learn latent information as the equality constraint. The idea is as follows. First, it is well known that a tight

ELBO means a better estimation for the posterior, which means that a bigger ELBO gives a better approximation. To make

the posterior distribution inference heuristic, we treat the ELBO as reward R in the reinforcement learning, and the encoder

q φ( v | x ), which is to approximate the posterior distribution, is treated as the policy networks. During the inference, this

process is depicted as followed, 

J(x, v ;φ) = 

| v | ∑ 

i 

R · q φ(v i | x ) 

where R denotes the RE (u, v ) − (KL u + KL v ) . To reduce the variance during the Monte Carlo estimation for the reinforce es-

timation, a careful selected c is subtracted from the reward R [29] , in this paper, c is the mean value of the disentangled

value v . To use the label y explicitly, the function f ( y ) is added as the factor before the reward R . When facing the unlabeled

data f (y ) = 1 to slack their influence, and it is f (y ) = y to the labeled data to reinforce the label signal. Then we add this

part to the objective function directly as the equality constraint. Its update rule is showed in Eq. (13) . 

�φ = f (y )(R − c) ∇ φ log q φ(v | x ) (13)

The reward will lead the model to find its way. The disentangled variable v acts as the classifier and helps the model

distinguish the latent information, and this lets agent get a better prediction. 

Also, the term log-likelihood expectation on disentangled variable v is added as the information entropy, which will be

calculated both in labeled data and the unlabeled data. This not only helps to reduce the large variance of the disentangled

information but also lets the model be guided by the labeled data and avoids the misconvergence during the training. Then

the objective function in Eq. (12) is changed into Eq. (14) . 

ˆ L (θ, φ; x, λ, c, β1 , β2 ) ≥ RE (u, v ) − λ(KL u + KL v ) 

+ (β1 R − c) log q φ(v | x ) + β2 H(q φ(v | x )) (14)

where y is the label information, β1 and β2 are the coefficient parameters, and we name this model SDVAE-II. This model

is guided by the labeled data, also learns from the unlabeled data using the reinforcement learning. 

4.4. With inverse autoregressive flow 

A flexible inference usually is built from the normalizing flow, which is to give a better approximation for the posterior

distribution [35] . The normalizing flow is the probability density transformation through a sequence of invertible mapping,

and after the sequence processing, a valid probability distribution is obtained. Among them, the IAF [18] is an effective

normalizing flow, which can handle high-dimensional latent space. 

In this paper, because the two different latent variables are extracted from the data directly, to make the posterior infer-

ence more flexible and enhance the ability in disentangled representation in high-dimension space, the IAF [47] is applied

in SDVAE-I and SDVAE-II. The chain is initialized with the output π0 and δ0 from the encoder. Together with the random

sample ε ∼ N (0, I ), the non-interpretable variable u is calculated as u 0 = π0 + δ0 � ε. The way to update IAF chain is the

same as that in the Long Short-Term Memory (LSTM) shown in Eq. (15) . 

u t = δt � u t−1 + πt (15)

where ( δt , π t ) are the outputs of the auto-regression neural networks, whose input is the last latent variable u t−1 , and t is

the flow length. 

4.5. Training of SDVAE 

The models can be trained end-to-end using mini-batch with the ADAM optimizer [16] . The training algorithm is sum-

marized in Algorithm 1 . In Line 1, we initialize the parameters. From Line 3 to Line 5, we sample a mini-batch to encode

the input data as u and v . From Line 6 to Line 10, we apply IAF. We then update the parameters from Line 11 to Line 13. 
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Algorithm 1 Training algorithm of the proposed models. 

1: Initialize the parameters ε, φ, θ
2: repeat 

3: x ← Sample a mini-batch from the datapoints 

4: ε ← Random sample from the noise distribution 

5: u, v ← q φ(u, v | x, ε) 

6: if IAF then 

7: for t < T do 

8: ˆ u ← ia f (u, θ ) 

9: end for 

10: end if 

11: ˆ x ← p θ (x | ̂  u , v ) 
12: g ← � θ,φ

ˆ L (θ, φ; x, λ, c) 

Calculate the gradients of Eq. (14) for SDVAE-II, and Eq. (12) for SDVAE-I. 
13: (θ, φ) ← Update with gradients g 

14: until model convergence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6. Discussion 

In this subsection, we will discuss the differences between the previous works [17,45] and our work. 

Firstly, the assumptions are different. In this work, we assume that the non-interpretable variable u and disentangled

variable v at the same time are from both the labeled data and the unlabeled data. Furthermore, we assume that these two

variables are independent. However, it is not the same in the previous works, they only extract the latent variable u from

the data. When there is no label information, label variable y inferred from the x with the shared parameters from q φ( u | x )

or inferred from u directly. 

Then, based on different assumptions, there are differences between the previous works in mathematics. The ELBO with

two independent latent variable inferences is written as Eq. (10) , and it is different from that in Eq. (7) who only has

one latent variable u inference. Furthermore, if we ignore the assumption difference, when facing with the labeled data in

previous works, their objective function is a special case in Eq. (14) when β1 = β2 = 0 . 

When the label is missing, previous works apply the marginal posterior inference over the label information which is

shown in Eq. (8) . In this paper, it is the inference for both latent variable inference over the u and v , and this is shown in

Eq. (16) . 

U(x ) = RE (u, v ) − λ(KL u + KL v ) + β2 H(q φ(v | x )) (16) 

5. Experimental results 

In this section, we conduct experiments to validate the effectiveness of the proposed framework. Specifically, we want to

answer the following questions: (1) Is the disentangled representation able to capture the categorical information? (2) Is the

non-interpretable variable helpful for the data reconstruction? (3) Is the proposed framework effective for semi-supervised

learning? To answer the above questions, we conduct experiments on image and text datasets, respectively. 

5.1. Baseline models 

To make fully evaluation for SDVAE, and make sure the comparisons cover a broad range of semi-supervised learning

methods, the following baselines are involved in the comparisons. 

• K-Nearest Neighbors (KNN): KNN [33] is the traditional graph-based method applied in classification. 

• Support Vector Machine (SVM): SVMs have been widely used in classification works, and Transductive SVM (TSVM)

[13] is a classic discriminative model in semi-supervised learning. Apart from TSVM, SVM can also be applied in text

data analysis, so the model NBSVM [42] is compared in the text data. 

• CNNs: CNNs [20] have been widely used in the image data and the text data. The model seq2-bown-CNN [14] is com-

pared in the text data, and CNN itself is compared in the image data, respectively. 

• LSTMs: In the text data analysis, there are lots of semi-supervised learning methods by applying LSTM [7] , models like

LM-L STM, SA-L STM [3] , etc., are compared in the text data. 

• Semi VAEs: Since VAE proposed [19] , it has been widely used in different fields, and semi-VAE [17] is popular in semi-

supervised learning for the image data, and SSVAE is for the text data [45] by applying the LSTM encode and decode the

word embedding [26] . Because of the proposed framework is a kind of VAE, the comparisons are made between those

two frameworks. 

Apart from the models mentioned above, models like RBM, Bow etc. [25,26,28] , are also included in the evaluation of

the text data. 
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Fig. 1. The first row in left figure and the right figure are the reconstruction images with the variable u and variable v masked respectively, and the images 

in the second row in both figures are the test images original. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Experiments on image datasets 

5.2.1. Datasets description 

For image domain, we choose two widely used benchmark datasets for evaluating the effectiveness of SDVAE, i.e., MNIST

[23] and SVHN [30] . In the MNIST, there are 55,0 0 0 data samples in the train set and 10,0 0 0 data samples in the test set.

In the SVHN, there are 73,257 data samples in the train set, and 26,032 data samples in the test set. Both datasets contain

10 categories. Before feeding the SVHN dataset into the model, the preprocessing of PCA is done. 

5.2.2. Model structure 

For the image data, the encoder is a deep network composed of two convolutional layers followed by two fully connected

layers. The convolutional layers are used to extract features from the images while the fully connected layers are used to

convert the features to the non-interpretable variable and the disentangled variable. The decoder is a network composed

of two fully connected layers to map the latent features back to images. Dropout [37] is applied to both the encoder and

decoder networks. 

5.2.3. Analysis on disentangled representation 

The first experiment is to explore how the non-interpretable variable u and disentangled variable v perform in the image

reconstruction. The experiment is conducted on the MNIST dataset. In the training data, we randomly select 30 0 0 data

samples as labeled data and the remaining samples are unlabeled. The dimension of the disentangled variable v is 10 which

is the same as the category number, and the label information can be got from disentangled variable v directly. And the

dimension of u is 50. 

We first train the model to learn the parameters. Then we use the trained model to learn latent representation on the

test data. After learning the representations, we mask u and v in turn to see how they affect the reconstruction of input

image. Two sample results are shown in Fig. 1 . We also use t-SNE [39] to visualize v of the testing data. The results from

those four models (SDVAE-I, SDVAE-I&IAF, SDVAE-II and SDVAE-II&IAF) are shown in Fig. 2 . 

From Figs. 1 and 2 , we can see that the disentangled variable v mainly captures the categorical information, and it has

little influence over the reconstruction task, because when variable u is masked, the reconstructed pictures are blurred. More

specifically, from Fig. 2 , we can see that images of the same class are clustered together, implying that the disentangled

variable v captures the categorical information. In addition, we find that cluster SDVAE-I gives the worst visualization as

clusters have intersections, while SDVAE-I&IAF and SDVAE-II&IAF give better visualization, which suggests that SDVAE-I&IAF

and SDVAE-II&IAF are better at capturing the categorical information, and the bounds of clusters in SDVAE-II are also clear

enough. 

From Fig. 1 , we can see that when v is masked, u still reconstructs the input image well, indicating that u is appropriate

for reconstruction. To explore how variable u takes effect in the image reconstruction, we range a certain dimension of u

from −2 to 2 on the specific labeled image, and the selected results are shown in Fig. 3 . 

From the image, we can see that u can control different properties in image reconstruction with different dimensions,

such as italic controlling, bold controlling, transform control, and the style controlling, etc. These can be seen from images

in Fig. 3 left to right. 

5.2.4. Semi-supervised learning 

Furthermore, we conduct experiments to test the proposed models in semi-supervised learning on MNIST. We randomly

select x points from the training set as labeled data, where x is varied as {10 0, 60 0, 10 0 0, 30 0 0}. The rest training data are

used as unlabeled data. We compare with state-of-the-art supervised and semi-supervised classification algorithms, which

are used in [17] . The experiments are conducted 10 times and the average accuracy with standard deviation are showed in

Table 1 . Note that the performances of the compared methods are from [17] too. From this table, we can see the proposed

model SDVAE-II&IAF performs best in classification and makes the least classification errors (in black bold format) with the

small part of the labeled data. SDVAE-II also has better performance than previous models. Although SDVAE-I performs not

as good as other proposed models, it still can achieve state-of-the-art results. 

To further validate the observation, we also conduct the semi-supervised learning over the SVHN, another popularly used

dataset. SVHN has 73,257 training samples and 26,032 test samples. Among the training data, we randomly select 10 0 0 data

samples as labeled data and the rest as unlabeled data. The results are shown in Table 2 . Similarly, among the model of same

kinds, SDVAE-II performs better and SDVAE-II&IAF gives the best performance both with the process of PCA preprocessing

or without PCA preprocessing. 
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Fig. 2. The t-SNE distribution of the latent variable v from proposed models, and different categories are in different colors with number. 

Fig. 3. The reconstruction images by varying u in a certain dimension. 

Table 1 

The classification errors on the MNIST data with part of labeled data, the number in brackets are the 

standard deviations of the results. 

Models 100 600 10 0 0 30 0 0 

KNN 25.81 11.44 10.07 6.04 

CNN 22.98 7.68 6.45 3.35 

TSVM 16.81 6.16 5.38 3.45 

Semi-VAE(M1) + TSVM 11.82( ± (0.25)) 5.72( ± 0.05) 4.24( ± 0.07) 3.49( ± 0.04) 

Semi-VAE(M2) ( [17] ) 11.97( ± (1.71)) 4.94( ± 0.13) 3.60( ± 0.56) 3.92( ± 0.63) 

Semi-VAE(M1 + M2) 3.33( ± (0.14)) 2.59( ± 0.05) 2.40( ± 0.02) 2.18( ± 0.04) 

SDVAE-I 5.49( ± (0.12)) 2.75( ± 0.11) 2.42( ± 0.08) 1.70( ± 0.09) 

SDVAE-II 3.60( ± (0.06)) 2.49( ± 0.10) 1.96( ± 0.09) 1.58( ± 0.09) 

SDVAE-I&IAF 3.33( ± 0.03) 2.74( ± 0.06) 2.24( ± 0.08) 1.33( ± 0.09) 

SDVAE-II&IAF 2.71( ± (0.32)) 1.97( ± 0.14) 1.29( ± 0.11) 1.00( ± 0.05) 

 

5.3. Experiments on text dataset 

5.3.1. Dataset description 

To test the model on text data, the IMDB data [28] is used. This dataset contains 25,0 0 0 train samples and 25,0 0 0 test

samples in two categories. 
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Table 2 

The results on the SVHN data, the number in brackets are the 

standard deviations of the results. 

Method Test error rate 

KNN 77.93% ( ± 0.08) 

TSVM 66.55% ( ± 0.10) 

Semi-VAE(M1) + KNN [17] 65.63% ( ± 0.15) 

Semi-VAE(M1) + TSVM 54.33% ( ± 0.11) 

Semi-VAE(M1 + M2) 36.02% ( ± 0.10) 

SDVAE-I 47.32% ( ± 0.13) 

SDVAE-II Without 44.16% ( ± 0.14) 

SDVAE-I&IAF Preprocessing 46.92% ( ± 0.12) 

SDVAE-II&IAF 34.25% ( ± 0.13) 

SDVAE-I 33.68% ( ± 0.11) 

SDVAE-II With PCA 29.88% ( ± 0.12) 

SDVAE-I&IAF Preprocessing 29.58% ( ± 0.14) 

SDVAE-II&IAF 29.37% ( ± 0.12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.2. Model structure 

In the application of the text data, the encoder is also the CNN, but unlike for image data, there are two CNNs parallelized

together, which are referring from [15] . One is extracting the feature at the word level, and the other is extracting the feature

at the character level. As to the decoder, we applied the conditioned LSTM [44] , which is given as follows: 

f t = σ (W f [ u ; v ] + U f h t−1 + b f ) 

i t = σ (W i [ u ; v ] + U i h t−1 + b i ) 

o t = σ (W o [ u ; v ] + U o h t−1 + b o ) 

I t = W c [ u ; v ] + U c h t−1 + b c 

c t = f t � c t−1 + i t � σ (I t ) 

h t = o t � relu (c t ) (17)

The conditional LSTM is same as the vanilla LSTM except for the current variable, which is replaced by the concatenation

of the latent variable u and v . The techniques of dropout [37] and batch normalization [12] are both utilized in the encoder

and decoder networks. 

5.3.3. Analysis on disentangled representation 

We randomly select 20K samples from the training set as the labeled data, and others are unlabeled during the training.

Similarly, we use the t-SNE to visualize the disentangled variable v ∈ N 

2 and the non-interpretable variable u ∈ N 

50 from the

proposed model on the test data and unlabeled data. Results are showed in Fig. 4 . 

From the left figure in Fig. 4 , we can see that the disentangled representation v can clearly separate the positive and

negative samples while non-interpretable representation cannot points from two clusters are interleaved with each other.

This suggests that the disentangled representation captures categorical information well, and there is seldom categorical

information in the non-interpretable variable. 

5.3.4. Semi-supervised learning 

We further conduct semi-supervised classification on the text dataset using the representation learned from previous

experiments and fine tuning the model. Similarly, we compare with state-of-the-art semi-supervised learning algorithms.

The average test error rate is reported in Table 3 . From the results, we can see that: (i) SDVAE-II&IAF outperforms the

compared methods, which implies the effectiveness of the proposed framework for semi-supervised learning; and (ii) As

we add reinforcement learning and IAF, the performance increases, which suggests the two components contribute to the

model. 

5.4. Parameters analysis 

There are several important parameters need to be tuned for the model, i.e., λ, β1 , β2 and the length of IAF. In this

section, we conduct experiments to analyze the sensitiveness of the model to the parameters. 

5.4.1. Effects of λ and the IAF length 

We firstly evaluate λ and the length of the IAF chain, which are proposed in the works of β-VAE [6] and IAF [18] . These

experiments are conducted over the MNIST training dataset. 

For λ, we mainly focus on the objective function depicted in Eq. (6) . Results with different λ values are shown in Fig. 5 (a).

From the results, we can see that it is better for λ to have a small value, which not only leads to a rich information in the
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Fig. 4. The left figure is the t-SNE distribution of the non-interpretable variable u , the right figure is the t-SNE distribution of the disentangled variable v 

correspondingly. Different categories are in different colors with number. 

Table 3 

The results on the IMDB data. 

Method Test error rate 

LSTM [3] 13.50% 

Full + Unlabeled + BoW [28] 11.11% 

WRRBM + BoW [28] 10.77% 

NBSVM-bi [42] 8.78% 

seq2-bown-CNN [14] 7.67% 

Paragraph Vectors [22] 7.42% 

LM-LSTM [3] 7.64% 

SA-LSTM [3] 7.24% 

SSVAE-II&LM [45] 7.23% 

SDVAE-I 12.56% 

SDVAE-II 7.37% 

SDVAE-I&IAF 11.60% 

SDVAE-II&IAF 7.18% 

 

 

 

 

 

 

 

 

 

 

latent variable but also gets a better RE. But as described before, the large value of KL-divergence is also the cause of

overfitting or the underfitting for the model. However, in the case of λ = 0 . 1 , there is a low RE, which is the sign of the

good performance. 

Then the model structure of the IAF chain is built according to the Eq. (15) , and the results with different length are

shown in the right figure in Fig. 5 (b). From the figure, we can see that it is not good to set the chain too long if it is a long

IAF. The REs are not so good together with the KL, and the latent variable is very unstable. On the contrary, there is a stable

increase in the KL, and a stable decrease RE when the length of the IAF chain is set to 1. This means that under the good

reconstruction, the latent variable captures more useful information. This is also validated in the results of the SDVAE-I&IAF

and SDVAE-II&IAF. Thus, in the experiments about the IAF, its length is set to 1 by default. 

We then get the improvement between the proposed model with IAF and that without IAF by subtracting the two per-

formances, i.e., ( Accuracy SDVAE&IAF − Accuracy SDVAE ). And the results show in Fig. 6 . From those results, we can see that the

IAF is effective in feature learning, and there are improvements in every dataset used both in SDVAE-I and SDVAE-II. So, we

can get the conclusion that it is useful to add IAF in proposed models both in text data and image data. 
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Fig. 5. The left y-axis in each figure is the RE which is axis of the solid lines, and the right y-axis is the KL which is axis of the dash lines. 

Fig. 6. The contribution of IAF in different datasets, and the value is the gap of accuracy from the SDVAE and SDVAE with IAF. 
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Fig. 7. The grid search results for the proper β1 and β2 finding. 

 

 

 

 

 

 

 

 

 

 

5.4.2. Effects of β1 and β2 

To decide the parameter β1 and β2 that in SDVAE-II, we made the grid search both on the text data and the image data.

For the image data, the experiment is conducted on the SVHN dataset with 10 0 0 labeled samples. Experimental results with

β1 ranges from 0.1 to 10 0 0, and β2 ranges from 0.01 to 100 are shown in Fig. 7 (a). For the text data, the experiment is

conducted on the IMDB data with 20,0 0 0 labeled samples. Experimental results with β1 and β2 range from 0.1 to 10 0 0 are

shown in Fig. 7 (b). 

From the Fig. 7 (a), we can see that, an acceptable range for β1 in the image data is [0.1:100] and [0.01:10] for the β2 .

Especially, when β1 = 0 . 1 and β2 = 1 , it is achieving the best result. 

For the text data, the results in the Fig. 7 (b) show that the accuracy is not sensitive to β2 . However, when β1 is small,

the result will be more precise. In conclusion, it is better to set β1 to 0.1 and β2 can be set randomly. 

6. Conclusion 

In this work, we proposed models that extract the non-interpretable variable u and the disentangled variable v from

data at the same time. The disentangled variable is designed to capture the category information and thus relieve the use

of the classifier in semi-supervised learning. The non-interpretable variable is designed to reconstruct the data. Experiments

showed that it could even reflect certain textual features, such as italic, bold, transform and style in the hand writing digital
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data during the reconstruction. These two variables cooperate well and each performs its own functions in the SDVAE. The

IAF improves the model effectively on the basis of SDVAE-I and SDVAE-II. In particular, SDVAE-II&IAF achieves the state-of-

the-art results both in image data and the text data for the semi-supervised learning tasks. 

There are several interesting directions need further investigation. First, in this work, we choose CNNs as our encoder. We

want to investigate more different deep neural networks to see which one gives the best performance under which condi-

tion. Second, in this work, we mainly focus on model reconstruction and semi-supervised classification. Another interesting

direction is to study the generated images by generator learned by the proposed framework. 
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